2 5 Ja n 20 05 Near - field Electrodynamics of Atomically Doped Carbon Nanotubes ∗
نویسندگان
چکیده
We develop a quantum theory of near-field electrodynamical properties of carbon nanotubes and investigate spontaneous decay dynamics of excited states and van der Waals attraction of the ground state of an atomic system close to a single-wall nanotube surface. Atomic spontaneous decay exhibits vacuum-field Rabi oscillations – a principal signature of strong atomvacuum-field coupling. The strongly coupled atomic state is nothing but a ’quasi-1D cavity polariton’. Its stability is mainly determined by the atomnanotube van der Waals interaction. Our calculations of the ground-state atom van der Waals energy performed within a universal quantum mechanical approach valid for both weak and strong atom-field coupling demonstrate the inapplicability of conventional weak-coupling-based van der Waals interaction models in a close vicinity of the nanotube surface.
منابع مشابه
ar X iv : h ep - p h / 05 01 22 0 v 1 2 4 Ja n 20 05 1 Some Recent Advances in Bound – State Quantum Electrodynamics
We discuss recent progress in various problems related to bound-state quantum electrodynamics: the bound-electron g factor, two-loop self-energy corrections and the laser-dressed Lamb shift. The progress relies on various advances in the bound-state formalism, including ideas inspired by effective field theories such as Nonrelativistic Quantum Electrodynamics. Radiative corrections in dynamical...
متن کاملField emission properties of N-doped capped single-walled carbon nanotubes: a first-principles density-functional study.
The geometrical structures and field emission properties of pristine and N-doped capped (5,5) single-walled carbon nanotubes have been investigated using first-principles density-functional theory. The structures of N-doped carbon nanotubes are stable under field emission conditions. The calculated work function of N-doped carbon nanotube decreases drastically when compared with pristine carbon...
متن کاملTheoretical Calculations of the Effect of Finite Length on the Structural Properties of Pristine and Nitrogen-doped Carbon Nanotubes
The effect of impurities on quantum chemical parameters of single-walled nanotubes (SWNTs) was studied using density functional theory (DFT). The density of states (DOS), Fermi energy and thermodynamic energies of (5,5) carbon nanotubes were calculated in the presence of nitrogen impurity. It was found that this nanotube remains metallic after being doped with one nitrogen atom. The partial den...
متن کاملJa n 20 05 Combination of carbon nanotubes and two - photon absorbers for broadband optical limiting
New systems are required for optical limiting against broadband laser pulses. We demonstrate that the association of non-linear scattering from single-wall carbon nanotubes (SWNT) and multiphoton absorption (MPA) from organic chromophores is a promising approach to extend performances of optical limiters over broad spectral and temporal ranges. Such composites display high linear transmission a...
متن کاملA pr 2 00 4 van der Waals energy under strong atom - field coupling in doped carbon nanotubes
Using a unified macroscopic QED formalism, we derive an integral equation for the van der Waals energy of a two-level atomic system near a carbon nanotube. The equation is valid for both strong and weak atom-vacuum-field coupling. By solving it numerically, we demonstrate the inapplicability of weak-coupling-based van der Waals interaction models in a close vicinity of the nanotube surface.
متن کامل